T-Stat Monitoring System

Kontinuierliche Messung der Gewebeoxygenierung in Echtzeit

T-Stat ist ein medizinisches Überwachungssystem zur kontinuierlichen Messung der Gewebeoxygenierung (StO₂). Es nutzt Visible Light Spectroscopy (VLS), um die Sauerstoffsättigung in kapillarnahen Gewebeschichten zu analysieren. Die Technologie liefert präzise, objektive Daten zur lokalen Durchblutung, ohne dass Kontrastmittel, Strahlung oder invasive Eingriffe erforderlich sind.

Im Gegensatz zu klassischen Nahinfrarotspektroskopie-Systemen (NIRS), die meist tiefere Gewebeschichten mit überwiegend venösem Anteil erfassen, misst T-Stat direkt im kapillären Bereich.

Wie funktioniert T-Stat?

T-Stat misst die Gewebeoxygenierung mithilfe der sogenannten Reflexionsspektroskopie im sichtbaren Lichtbereich. Dabei wird breitbandiges Weißlicht (ca. 400-700 Nanometer) über eine Glasfaser-Sonde auf die Gewebeoberfläche geleitet. Ein Teil des Lichts wird vom Gewebe absorbiert, der Rest reflektiert. Das reflektierte Licht enthält spektrale Informationen über die Konzentration von Oxyhämoglobin (HbO₂) und Desoxyhämoglobin (Hb) im kapillären Blut.

Das reflektierte Licht wird vom Detektor spektral aufgeschlüsselt und zur Bestimmung der Sauerstoffsättigung ausgewertet. Die charakteristischen Absorptionsmuster der beiden Hämoglobinformen ermöglichen eine quantitative Berechnung der lokalen Sauerstoffsättigung (StO₂). Die Messung erfolgt kontinuierlich und in Echtzeit.

Oberflächensensor 1,0 cm

Technische Highlights

Merkmal	Beschreibung	
Messmethode	Reflektionsspektroskopie mit sichtbarem Licht	
Spektralbereich	ca. 400-700 Nanometer	
Messtiefe	1-3 Millimeter	
Messfrequenz kontinuierlich, bis zu 1 Messung pro Sekunde		
Sensoren	Oberflächlich 2,5 und 1 cm, Oral, Endoskopisch	
Kanäle	ein Sensor pro Gerät	
Anzeige	Echtzeit-Grafik und numerische Werte	
Datenexport	PDF, CSV, HL7-kompatibel	

Endoskopischer Sensor 1.5 mm

Oraler Sensor

T-Stat Monitoring System

Kontinuierliche Gewebeoxygenierung in Echtzeit

Klinische Vorteile

- Frühzeitige Erkennung von Durchblutungsstörungen, zum Beispiel bei Lappenplastiken oder Darmverbindungen
- Messung im kapillären Bereich für klinisch relevante Aussagen
- Anwendung ohne Kontrastmittel oder Strahlung
- Sensoren für unterschiedliche Gewebearten flexibel einsetzhar
- Kompaktes Gerät für den Einsatz im Operationssaal oder auf der Intensivstation
- Dokumentationsfähig durch Anschluss an elektronische Patientenakten oder Krankenhausinformationssysteme

OnCall App für Mobilgeräte oder Tablet zur ständigen Echtzeit-Überwachung der Patienten

Indikationen

Plastisch-rekonstruktive Chirurgie

- Lappenplastiken (z. B. DIEP, TRAM, Latissimus)
- Brustrekonstruktion
- Hauttransplantate

Gefäßchirurgie

- Bypass-Operationen
- Revaskularisation
- pAVK-Überwachung

Intensivmedizin & Notfallmedizin

- Sepsis- und Schockmanagement
- Monitoring bei kritisch kranken Patienten
- Frühwarnsystem für Gewebehypoxie

Gastrointestinale Chirurgie

- Überwachung der Darmperfusion
- Anastomosenkontrolle

Wundversorgung & HBOT

- Beurteilung chronischer Wunden
- Monitoring bei hyperbarer Sauerstofftherapie (HBOT)

Artikel-Nr.	Produktbezeichnung	Details	Stückzahl je VE
T-Stat 303/T 2.0	T-Stat Monitor	-	1 Stück
CTH-060-SUR-2.5 cm	T-Stat Oberflächensensor 2,5 cm	steril	5 Stück
CTH-060-SUR-1.0 cm	T-Stat Oberflächensensor 1,0 cm	steril	5 Stück
CTH-060-ENDO	T-Stat Endoskopischer Sensor 1,5 mm	steril	5 Stück
CTH-060-ORA M	T-Stat Oraler Sensor	steril	5 Stück